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ABSTRACT

Besides their causal connection with long and short-term magnetic variability, solar bipolar magnetic

regions are our chief source of insight into the location, size, and properties of large-scale toroidal mag-

netic structures in the solar interior. The great majority of these regions (≈95%) follow a systematic

east-west polarity orientation (Hale’s law) that reverses in opposite hemispheres and across even and

odd cycles. These regions also present a systematic north-south polarity orientation (Joy’s law) that

helps build the poloidal field that seeds the new cycle. Exceptions to Hale’s law are rare and difficult

to study due to their low numbers. Here we present a statistical analysis of the inclination (tilt) with

respect to the equator of Hale vs. Anti-hale regions spanning four solar cycles, considering two comple-

mentary tilt definitions adopted in previous studies. Our results show that Anti-Hale regions belong

to a separate population than Hale regions, suggesting a different originating mechanism. However,

we find that Anti-Hale region tilts present similar systematic tilt properties and similar latitudinal

distributions as Hale regions, implying a strong connection between the two. We see this as evidence

that they belong to a common toroidal flux system. We speculate that Anti-hale regions originate

from poloidal field sheared and strengthened ”on-the spot” after the emergence of hale regions with

very strong poloidal contribution. Thus, they are not in contradiction with the idea of largely coherent

toroidal flux systems inside the solar interior.

Keywords: Solar physics — Sun: magnetic field — sunspots — Hale’s law

1. INTRODUCTION

Bipolar magnetic regions (BMRs) are regions of strong

magnetic fields that emerge to the solar photosphere the

solar photosphere, acting as the main source of space

weather events. They typically form sunspots, where

strong magnetic field bundles cross the photosphere (van

Driel-Gesztelyi & Green 2015), appearing as dark con-

trast regions on the solar photosphere in visible light.

The number of BMRs present at any given moment on

the solar surface waxes and wanes during the solar cy-

cle. Although we cannot observe the solar interior where

BMRs originate, their observation give us insight into

Corresponding author: Andrés Muñoz-Jaramillo
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the dynamical behavior of the large-scale internal solar

magnetic field.

Three main empirical laws govern populations of ac-

tive regions: Spörer’s Law (Carrington 1858) states that

the latitude of emerging sunspots decreases with time

as the solar cycle goes forward (from mid-latitudes to-

wards the equator), giving rise to the time vs. latitude

plot called the butterfly diagram (see Fig. 2). Hale’s law

(Hale & Nicholson 1925), which establishes that BMRs

present a systematic East-West magnetic polarity orien-

tation for a given solar hemisphere – for example, if the

positive pole of the BMR trails behind the negative pole

at the northern solar hemisphere in the east-west direc-

tion, then the negative pole will be behind the positive

in the south in the same direction. The leading polarity

of each hemisphere is reversed for odd and even cycles.

Finally, Joy’s law (Hale et al. 1919) expresses that BMRs
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Figure 1. Schematic description of the different combinations of tilt and hale orientations and how they translate to angles
depending on the reference frame used. Blue angles use the negative polarity as the reference frame and go between −180o and
180o. This definition is better suited to highlight the difference between Hale (HH) and Anti-Hale (AH) regions. Red angles
use the leading polarity as the reference frame and go between −90o and 90o. This definition is better suited to highlight the
difference between Joy and anti-Joy regions.

tend to have a systematic North-South orientation, with

the leading (trailing) polarity being closer to the equa-

tor (pole). This law is typically quantified through the

measurement of a BMR’s tilt (i.e. the angle between a
line that passes between the center off a BMR’s polar-

ities and a line parallel to the solar equator). Regions

that follow this law are typically refered to as Hale (HH)

regions.

There is a small fraction of BMRs that violate Hale’s

law and its hemispheric rule (Richardson 1948): these

“anti-Hale (AH)” regions have an opposite East-West

polarity orientation than most of the BMRs in the re-

spective hemisphere. These regions comprise between

5-10% of all BMRs (Richardson 1948; Wang & Sheeley

1989; Khlystova & Sokoloff 2009; McClintock et al. 2014;

Stenflo & Kosovichev 2012; Li 2018). In spite of their

relatively small numbers, AH regions provide important

clues to the structure of the internal magnetic field.

Previously, Stenflo & Kosovichev (2012) argued that

AH regions are a distinct population, rather than

anomalies of the HH groups. They suggest that the

appearance of AH regions in similar latitudes that HH

regions rules out the possibility of well-defined, coherent

toroidal flux systems as a source of all active regions. On

the other hand, McClintock et al. (2014) hypothesized

that AH regions are part of a continuous distribution

of regions that stems from the HH population, a pic-

ture that more consistent with the existence of a largely

coherent toroidal flux system. Here we provide further

evidence that AH regions comprise a different popula-

tion than HH regions, implying that their origin is dif-

ferent than that of HH. However, we still find a strong

connection between some of their statistical properties,

which we take as evidence of a causal connection be-

tween them.

In Section 2 we introduce the tilt definitions used in

this work. Sections 3 and 4 describe the data and the

determination of flux cut-offs and calibration factor re-

spectively. In Section 5 we determine the Hale and anti-

Hale fractions by hemisphere. Section 6 describes the
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combination of BMRs from different hemispheres and

Cycles. In section 7 we analyze to what extent do Hale

and Anti-Hale BMRs follow Joy’s Law. In section 8 we

report the optimal analytic fit to the distribution of Hale

and anti-Hale region tilts. In section 9 we demonstrate

that Hale and anti-Hale region tilts cannot be described

using a unique distribution. Finally, in Section 10 we

discuss the possible origin of the Anti-Hale regions and

in Section 11 we provide a summary with the main con-

clusions.

2. ABSOLUTE VS. RELATIVE BMR MAGNETIC

TILT DEFINITIONS

There are two main ways of defining the tilt of a BMR

that showcase different aspects of BMR inclination (see

Fig. 1). They differ on the way BMR poles are chosen as

references. They have different flavors in the way they

represent the combination of HH vs.AH and Joy (lead-

ing polarity closer to the equator) vs. anti-Joy (leading

polarity closer to the pole).

One possibility is to always use the same polarity (typ-

ically the negative polarity) as the location of the refer-

ence frame and the other polarity (typically the positive)

to determine the tilt angle (see for example Li & Ulrich

2012; McClintock et al. 2014). Under this definition,

tilt angles vary between −180o and 180o. This reference

frame (and associated angles) are shown using blue ink

in Fig. 1. Under this definition, HH vs. AH regions will

separate into angles with a magnitude larger vs. smaller

than 90o (depending on the hemisphere and cycle). Joy

vs. anti-Joy are in turn differentiated by a change of

angle sign for a given hemisphere and cycle. This ap-

proach, which we refer to from now on as the “absolute
tilt”, enables the simultaneous analysis of Hale orienta-

tion and Joy tilt angle, while treating all BMRs as part

of a continuous distribution of angles. It contains the

implicit assumption that HH and AH regions belong to

a continuously distributed population.

The second possibility is to always use the leading

polarity (regardless of its polarity) as the location of

the origin and the other polarity (the trailing polarity)

to determine the tilt angle (see for example Wang &

Sheeley 1989; Howard 1991; Stenflo & Kosovichev 2012).

Under this definition, tilt angles vary between −90o and

90o. This reference frame (and associated angles) are

shown using red ink in Fig. 1. Under this definition,

HH vs. AH regions have to be explicitly separated since

there is no information in the tilt angle that conveys

Hale orientation. Joy vs. anti-Joy BMRs are very easily

differentiated because Joy (anti-Joy) regions always have

positive (negative) angles in the Northern hemisphere

(regardless of the cycle) – signs reverse for the Southern

hemisphere. This approach, which we refer to from now

on as the “relative tilt”, focuses exclusively on the

relative position of BMR leading and trailing polarities.

It contains the implicit assumption that HH and AH

regions belong to different populations.

To this date, analyses of tilt and Hale-orientation have

chosen one approach or the other. We speculate that it

is not accidental that studies that use the absolute tilt

definition conclude that BMRs arise from a continuous

distribution of angles, whereas studies that use the rela-

tive tilt definition conclude that HH and AH populations

are different. The aim of this study is to determine the

significance limit at which we can reject the null hy-

pothesis that the HH and AH regions constitute a single

population and this is only possible to do if both defini-

tions of tilt are studied simultaneously.

As done by Howard (1991), we compute the magnetic

tilt angles as:

tan(γ) = ∆λ/(∆φ cos(λ̄)) (1)

Where λ̄ is the midpoint latitude of the polarity pair,

∆λ and ∆φ are the differences between latitude and

longitude respectively. For the absolute tilt calculation

we set the negative polarity as the reference polarity and

use the arc-tangent function with two arguments so that

the resulting angles go between −180o and 180o. For

the relative tilt calculation we use the leading polarity

as reference and use the single argument arc-tangent so

that the resulting angles go between −90o and 90o. We

ensure that tilt angles are positive (negative) for Joy re-

gions in the Northern (Southern) hemispheres. For both

relative and absolute tilts we use the division shown in

Figure 1 to separate our data into Hale and AH regions

depending on cycle and hemisphere.

3. DATA

We use data from two ground-based and two spaced-

based instruments. Our ground-based instruments are

part of the Kitt Peak Vacuum Telescope survey. The

first instrument is the 512 Diode Array Magnetograph

(from 1976 to 1993 Livingston et al. 1976) and the sec-

ond the solar Spectromagnetograph (SPMG, from 1992

to 2001 Jones 1992). Both instruments obtained images

at a cadence of one image per day. The 512 instrument

has a resolution of 1” per pixel; SPMG has a resolu-

tion of 1.15” per pixel. Our space-based instruments

are the Michelson Doppler Imager (MDI; Scherrer et al.

1995, 1996-2010), on board the Solar and Heliospheric

Observatory (SOHO) collected 136,839 magnetograms

from 1996 to 2011 at a 96 minutes cadence and a res-

olution of 2” per pixel. We also use the data from the

Helioseismic and Magnetic Imager (HMI; Scherrer et al.
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Figure 2. Solar Latitude of active regions as a function of time (Butterfly diagram) for the last four solar cycles. Blue data is
from KPVT/512, purple for KPVT/SPMG, orange for SOHO/MDI and green color for SDO/HMI measurements. The overlap
regions between instruments are plotted in black color. Anti-Hale regions are shown in red.

2012, 2010-present), on board the Solar Dynamics Ob-

servatory (SDO), which produces magnetograms with a

resolution of 0.5” per pixel at a 45 second cadence.

Our BMR dataset consists of 9,243 individually

tracked BMRs, obtained using the Bipolar Active Re-

gion Detection (BARD) code described by Muñoz-

Jaramillo et al. (2016). Here we use a single tilt mea-

surement per BMR, at the moment of maximum flux,

to avoid folding the time evolution of a BMR tilt dur-

ing a BMR’s lifetime into our analysis. For each BMR

we measure the flux, area, and flux-weighted latitude

and longitude centroids of the positive and negative po-

larities. Data is shown in Figure 2. Our data covers

four solar cycles (21-24) as seen by the four different

instruments (KPVT/512, KPVT/SPMG, SOHO/MDI,

and SDO/HMI).

3.1. Combination of data from different instruments

Figure 3 shows the distributions of net BMR magnetic

flux during overlap intervals (512-SPMG, SPMG-MDI

and MDI-HMI). In each of these histograms we observe

that there is general agreement for strong BMRs, with

the discrepancies arising for small objects. This dis-

crepancy arises from an artificial cut-off introduced by

the difference in sensitivity and resolution across mag-

netographs (very clear in the case of the MDI vs. HMI

comparison). Ensuring that the populations across in-

struments sample a similar range of fluxes is important

because tilt scatter is dependent on flux (Stenflo &

Kosovichev 2012; Jiang et al. 2014). Furthermore,

due to the fact that small objects are more numerous,

they have a sizable effect on tilt statistics.

Given that our tilt angles are calculated using the flux

weighted centroid of the positive and negative regions

in a BMR, we believe our tilt measurements are largely

independent of instrument cross-calibration issues and

are internally consistent. Because of this a rough cali-

bration factor between instruments, coupled with a uni-

versal flux cut-off across instruments, are sufficient to

ensure that we are comparing populations with similar

flux statistics. We demonstrate quantitatively that this

is the case in Section 6.

4. DETERMINATION OF FLUX CUT-OFFS AND

APPROXIMATE CALIBRATION FACTORS

We take advantage of the time-overlap between instru-

ments to derive an approximate flux calibration, as each

of the instruments has its own resolution and observa-

tional systematic issues. To find the optimal calibra-

tion factor, we minimize the two-sample Kolmogorov-

Smirnov (K-S) distance between the flux distribution of

the overlapping period for each pair of instruments. We

do this after applying a calibration factor to one of the

instruments and a common flux cutoff for both the tar-

get and calibrated instrument. This form of calibration

was used by Muñoz-Jaramillo et al. (2015b) to calibrate

sunspot group areas. Calibrating the strong end of the

distribution (i.e. the big BMRs that all instruments see

well) is the best way of homogenizing our data because

small BMRs are systematically under-observed due to

cadence and sensitivity issues. Furthermore, these sys-

tematic issues are different for each instrument. Intro-

ducing a cut-off allows the fit to focus on the large BMRs

that all instruments can see equally well.

songyongliang
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Figure 3. Empirical BMR flux distributions for the overlap-
ping periods between instruments. Between KPVT/512 and
KPVT/SPMG from April 1992 to April 1993, SPMG-MDI
from May 1996 to December 1999, and MDI-HMI from April
2010 to April 2011. Blue line represents the distribution of
KPVT/512, KPVT/SPMG in orange, SOHO/MDI in green,
and SDO/HMI in red.

Figure 4 shows the result of the 2-dimensional opti-

mization (calibration factor plus a common cutoff af-

ter calibration). Dark (light) regions indicate a large

(small) K-S distance. Hatched areas indicate parame-

ters for which the K-S test and the Anderson-Darling

(A-D) tests reject the hypothesis that BMRs observed

by different instruments belong to the same population.

There are different combinations of factors and flux cuts

that optimize the match between distributions. How-

ever, there is a trade off between K-S distance and cut-

off: the more regions we leave out, the easier it is to

find a fit. However, leaving out too many regions is

counter productive because it will reduce the number of

regions we can analyse. We find two main optimal re-

gions: a region around a cutoff of 3× 1021 and another

around 1022. We pick the cutoff value of 3 × 1021 in

order to retain as many BMRs as possible for our analy-

sis. This translates into a calibration factor around 1 for

KPVT/512 vs KPVT/SPMG, 0.8 for SOHO/MDI vs for

KPVT/SPMG, and 0.8 for SOHO/MDI vs SOHO/HMI.

Thus a 0.8 factor applied to MDI is sufficient to get

approximate consistency in the flux distribution for all

instruments and all cycles. This factor in good agree-

ment (1/0.8 = 1.25) with the 1.3 factor found by Liu

et al. (2012) to calibrate HMI to MDI for strong mag-

netic fields, considering that the focus of our analysis

are BMRs containing the strongest magnetic fields in

the solar photosphere.

Once the calibrated factor is applied, we can see a

better agreement between the flux distributions of the

different instruments for strong BMRs (see right pan-

els of Fig. 4 vs. panels in Fig. 3). We use 3 × 1021Mx

as a universal cutoff for all instruments (after applying

the 0.8 factor to MDI), shown in the right column of

Fig. 4 as a vertical black dashed line. Any BMR with

less flux than this cutoff is removed from our analysis.

We discard 1, 232 BMRs leaving ∼ 87% from the initial

9, 243 BMRs in the database. Additionally, we only in-

clude BMRs from a single instrument in each overlap.

This ensures that we do not count each BMR more than

once, leaving 7, 511 flux-normalized BMRs for use in our

analysis of tilts.

5. HALE AND ANTI-HALE FRACTIONS BY

CYCLE AND HEMISPHERE

Table 1 and Figure 5 show the numbers and frac-

tions of the Hale and AH sunspots for each hemisphere

and cycle. Overall, the fraction of AH sunspots in our

data is 5.61% which is consistent with previous estimates

(Richardson 1948; Wang & Sheeley 1989; Khlystova &

Sokoloff 2009; Stenflo & Kosovichev 2012). Other stud-

ies (McClintock et al. 2014; Li 2018) have reported a

larger fraction of AH BMRs ( 8%). This discrepancy is

likely driven by the inclusion of small objects in other

surveys, which invariably dominate BMR statistics due

the fact that smaller regions are more numerous. Li

(2018) reports an AH fraction of 8%, but applying a

flux cutoff of 3 × 1021 to their Figure 10, like the one

we use in this work, reduces the fraction to 6%. This

does not invalidate in any way their results. It simply

highlights the importance of understanding the conse-

quences of working with objects near a survey’s thresh-

old of detection. It also highlights the difficulty of com-

paring surveys with different (and unspecified) detection

thresholds.

There seems to be a downward trend in the proportion

of AH BMRs from cycle to cycle in our observed cycles
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Figure 4. Two dimensional optimization of calibration factor and flux cut for the overlapping periods between instruments.
Left: Brightness indicates the KS distance between distributions. Blue vertical hatches (diagonal red hatches) indicate the
region where the Kolmogorov-Smirnov (Anderson-Darling) statistics rejects the hypothesis of the two populations belonging to
the same distribution. White dashed lines show the optimal calibration factor (horizontal) and universal magnetic flux cutoff
(vertical) that maximize the similarity between distributions. The only distribution that needs to be calibrated is SOHO/HMI,
with a factor of 0.8, which makes it homogeneous both with KPVT/SPMG and SDO/HMI. We find that a universal flux cutoff
of 3 × 1021Mx is an optimal compromise between maximizing distribution homogeneity and minimizing the number of BMRs
that have to be rejected. Right: Homogenized distributions showing the universal cutoff of 3×1021Mx with a black dashed line.
MDI flux has been applied a 0.8 correction factor.

(21-24; see left panel of Fig. 5). This trend is also visible

in the results of McClintock et al. (2014) and Li (2018).

It is possible that there is a relationship between cycle

amplitude and how many AH regions it produces (see

the right panel of Fig. 5): the stronger the cycle, the

higher the proportion of AH regions. This relationship

does not seem to be very strong, but it is still significant

after estimating the Wilson uncertainty interval for a

binomial distribution (Brown et al. 2001). As will be

explained in Section 10, we speculate that this hints

to connection between AH regions and preceding HH

regions with a strong poloidal field component.

6. COMBINATION OF BMR’S FROM DIFFERENT

HEMISPHERES AND CYCLES

Polarity orientation is opposite for the Northern and

Southern hemispheres and reverses with every new cycle.

This means that the absolute (relative) tilt angles that
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Table 1. Numbers and fractions of Hale and anti-Hale BMRs per cycle and hemisphere.

Cycle Hem. #
Hale anti-Hale

# % # %

21
N 1001 933 93 68 7

S 1065 979 92 86 8

22
N 1022 959 94 63 6

S 1194 1121 94 73 6

23
N 938 900 96 38 4

S 1133 1084 96 49 4

24
N 570 552 97 18 3

S 588 562 96 26 4

Total: 7511 7090 94 421 6

represent the different combinations of Joy vs. anti-Joy

and Hale vs. AH orientations can adopt different sets

of values for different hemispheres and odd/even cycles;

4 in the case of the absolute tilt and 2 in the case of

the relative tilt (see Figure 1). In order to take full

advantage of four cycle’s worth of BMRs, we first verify

that BMR tilts in different cycles can be considered to

belong to the same population and then proceed to fold

them into a single population by modifying their tilt

angles to become what they would be if hemispheric

and cyclic reversals would not take place.

Table 2 shows the results of the Kolmogorov-Smirnov

(KS) test for a hierarchical merging of our BMRs into a

single population. We perform this merging separately

for Hale and anti-Hale BMRs. Each pair of columns

named D-Statistic and p-value indicate the maximum

difference between the empirical cumulative distribution

functions of both populations D-Statistic and the signif-

icance with we can reject the null hypothesis that they

belong to the same population (1 - p-value)*100%.

Merging BMR tilts belonging to different cycles and

hemispheres requires the following manipulations (see

Fig. 1):

• In the case of relative tilt, all BMRs from the same

hemisphere can be combined without manipula-

tion and BMRs of different hemispheres can be

combined after a sign change.
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Table 2. Kolmogorov-Smirnov test of the progressive combination of cycle and hemispheric BMRs into a unified set.

Absolute Tilt

Population Hemisphere Cycle D-statistic p-value D-statistic p-value D-statistic p-value

Hale

N
21+23 0.024 0.94

> 0.023 0.78

> 0.018 0.54
22+24 0.089 0.01

S
21+23 0.049 0.16

> 0.039 0.11
22+24 0.049 0.16

Anti-Hale

N
21+23 0.100 0.94

> 0.107 0.61

> 0.077 0.53
22+24 0.100 0.94

S
21+23 0.112 0.77

> 0.077 0.745
22+24 0.114 0.41

Relative Tilt

Population Hemisphere Cycle D-statistic p-value D-statistic p-value D-statistic p-value

Hale

N
21+23 0.024 0.94

> 0.022 0.78

> 0.020 0.54
22+24 0.07 0.04

S
21+23 0.041 0.35

> 0.039 0.11
22+24 0.054 0.22

Anti-Hale

N
21+23 0.166 0.46

> 0.108 0.61

> 0.077 0.53
22+24 0.230 0.40

S
21+23 0.112 0.77

> 0.114 0.41
22+24 0.311 0.04

• In the case of the absolute tilt, tilt angles belong-

ing to opposite hemispheres and subsequent cycles

are consistent (i.e. see bottom-left and top-right of

Fig. 1). The other combination of cycle parity and

hemisphere needs to be adjusted by 180o in order

to make all angles consistent.

We first start by combining BMRs from the same

hemisphere for odd (21+23) or even (22+24) cycles.

Overall, the null hypothesis that BMRs from the same

hemisphere and odd/even cycles belong to the same pop-

ulation holds in almost all cases. The only exception are

22N+24N for Hale regions and 22S+24S for AH regions.

We suspect that in these cases the null hypothesis is re-

jected due to the fact that our observations for cycle 24

are incomplete, so we may not have sufficient statistics

to fully sample the tilt population (i.e. randomly draw-

ing BMRs from the common distribution will, in some

cases, result in different populations). However, as we

progressively merge all regions of the same hemisphere

for all cycles (6th and 7th columns of Table 2) and all

Hale or AH regions (last two columns of Table 2) the null

hypothesis that BMRs from all cycles and hemispheres

belong to the same population holds with a very high

degree of significance.

7. JOY’S LAW FOR HALE AND ANTI-HALE BMRS

The combination of all cycles and hemispheres gives

us enough statistics to look at the dependence of tilt

angle on latitude for AH BMRs in comparison to HH

BMRs. Figure 6 shows the relative abundance of HH

and AH regions for different latitude bins, as well as

box plots of HH and AH relative tilt angle distributions

as a function of latitude. Overall, the relative abun-

dance of HH and AH regions as a function of latitude

(top panel of Fig. 6) is very similar. Performing a K-

S test between the latitudes of HH and AH regions we

find that we cannot reject the null-hypothesis that they

are the same population with full confidence (p-value of

0.07). We interpret this as evidence that the majority

of AH regions are likely connected in some way with the

flux that gives rise to HH regions. The two distribu-
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Figure 6. Top: Relative abundance of Hale (dark purple) and Anti-Hale (light blue) regions as a function of latitude. The
numbers on each column indicate the number of regions in a given bin. Bottom: Boxplot illustrating the distribution of tilt
angles for each latitude. Bold horizontal lines mark the median of the distribution. The sloping notches indicate the uncertainty
on the median estimation calculated using 1000 random subsets of the population. The box indicates the extent of the 2nd and
3rd quartiles in the distribution and the whiskers mark the 5% and 95% percentiles. Light-red denotes bins with so few points
that no meaningful estimation of the median can be made.

tions peak slightly differently, with the AH distribution

peaking at a higher latitude than the HH distribution.

Additionally, there is a significant difference between the

two distributions near the equator (0-5 bin). We inter-

pret this as evidence that some of the AH regions near

the equator are likely normal HH regions belonging to

the opposite hemisphere.

In terms of the latitudinal dependence of the distri-

bution of tilts (bottom panel of Fig. 6). The first clear

difference between HH and AH regions is the spread in

the distribution of tilt angles: for Hale regions 50% of

all tilt angles within each latitude bin are within 10o

of the median, whereas for AH regions they are within

20o. HH tilts systematically increase with latitude and,

thanks to the very good statistics, the median tilt can be

determined with good certainty (the uncertainty inter-

val indicated by the notches in the boxes is ∼ ±3o). AH

regions, on the other hand, present significantly more

uncertainty in the position of their median (∼ ±10o)

due to their larger scatter and poorer statistics. In the

case of the 30-55o and 35-40o bins (denoted with a ligh-

red color) the uncertainty is so large, that any measure-

ment of the median is meaningless. The uncertainty in

AH medians makes it hard for us to place strong con-

straints on the dependence of AH tilt angle on latitude.

Nevertheless, it is very clear that there is a systematic

hemispheric tendency of the same sign as the one pre-

sented by HH regions: i.e. the leading polarity of AH

regions also tends to be closer to the equator than the

trailing polarity. It also seems that the median tilt does

increase with latitude starting int the 10-15o bin. It is

possible that the two first bins (0-5o & 5-10o) reflect the

impact of regions belonging to the opposite hemisphere

that emerge across the 0o line.
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Table 3. Akaike weights and KS test of 7 analytic distributions for HH and AH regions. Distributions are ordered according
to the relative AIC for HH regions. Out of these distributions, the best fit to HH (AH) regions is the T-student (von Mises)
distributions (denoted using bold letters).

Model Selection and Goodness of Fit
Fitted Hale - Best: Student’s T Anti-Hale - Best: von Mises

Distribution ∆AIC AICw K-S distance K-S p ∆AIC AICw K-S distance K-S p

Student’s T (HH) 0 ∼1.00 0.015 0.07 51 ∼0.00 0.033 0.73

Laplace 41 ∼0.00 0.019 0.01 79 ∼0.00 0.042 0.44

Logistic 181 ∼0.00 0.026 ∼0.00 59 ∼0.00 0.023 0.98

von Mises (AH) 255 ∼0.00 0.043 ∼0.00 0 ∼1.00 0.047 0.29

Skew-Normal 687 ∼0.00 0.059 ∼0.00 51 ∼0.00 0.034 0.71

Normal 909 ∼0.00 0.071 ∼0.00 49 ∼0.00 0.033 0.73

Cauchy 1265 ∼0.00 0.057 ∼0.00 190 ∼0.00 0.084 0.01

Best fitting parameters
Hale - Best: Student’s T Anti-Hale - Best: von Mises

Fitted Standard Standard

Distribution n Location µ Scale s Deviation κ Location µ Deviation

Student’s T (HH) 3.45 7.5o 14.46o 22.31o

von Mises (AH) 2.62 2.85o 41.55o

8. OPTIMAL ANALYTIC FIT TO TILT ANGLE

POPULATIONS

We now identify the analytic distributions that best

capture the populations of HH and AH tilt. We use two

criteria to make model discrimination The first one is

Akaike’s information criterion (AIC; Akaike 1983). The

AIC is a powerful tool for discriminating between dif-

ferent non-nested models by making an estimate of the

expected relative distance between the fitted model and

the unknown true mechanism that generated the ob-

served data. The AIC for a model Mj is defined as:

AICj = −2L(Mj)− 2nj , (2)

where L(Mj) is the log-likelihood of model Mj :

L(M) =

n∑
i=1

log(P(Di|M)). (3)

and nj the number of parameters of model j. The model

with the smallest AIC is chosen as the best. Minimizing

AIC looks for the model with the largest log-likelihood.

However, log-likelihood alone is not sufficient to discrim-

inate between models because it is biased as an esti-

mation of the model selection target. This bias was

found by Akaike (1983) to be approximately equal to

each model’s number of parameters (n), and thus the

presence of the second term in Eq. 2. Together, log-

likelihood and n are used to strike a balance between

bias and variance (or the trade-off between under-fitting

and over-fitting).

The relative nature of the AIC is better represented

by calculating the relative AIC differences:

∆AIC
j = AICj −min(AIC). (4)

This in turn can be used to estimate the likelihood of a

model given the data:

L(Mj |D) ∝ exp

(
−

∆AIC
j

2

)
, (5)

and use it to calculate the Akaike weights:

Awj =
exp

(
−∆AIC

j

2

)
∑K
k=1 exp

(
−∆AIC

k

2

) , (6)

which are a measure of the probability that the model

Mj is the best model given the data. For more infor-

mation about AIC we recommend the excellent book by

Burnham & Anderson (2002).

It is very important to highlight that the significance

of AIC is strongly dependent on an appropriate choice of

models. Applying AIC to a set of very poor models will

always select one estimated to be the best (even though

that model may still be poor in an absolute sense). To

account for that, we also use the one sided K-S test

under the null hypothesis that the HH and AH popula-

tions come from a given analytical distribution. Table
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3 shows the result of our fits. We test all distributions

with infinite or circular support in the SciPy stats pack-

age (Virtanen et al. 2020).

The best fit, by far, to the HH tilt angle population

is a Student’s T distribution. However, it is also the

only one for which the null hypothesis of the K-S test

cannot be rejected with confidence. We find this a dif-

ficult result to interpret. The Student’s T distribution

is overwhelmingly used to estimate the uncertainty in

the estimation of the mean of a population governed

by a normal distribution, given a small sample of ob-

servations, when the true variance of the distribution is

unknown. It is defined as:

f(x|n, µ, s) =
Γ
(
n+1

2

)
s
√
nπΓ

(
n
2

) (1 +
(x− µ)2

ns2

)−n+1
2

, (7)

where Γ is the gamma function, n is a shape parame-

ter typically associated with the number of degrees of

freedom of a T distribution, µ is the location parame-

ter, and s the scale parameter. We could not find an

example where the T distribution is used to describe a

physical population nor a physical generative model for

this distribution. We thought perhaps that this out-

come stems from the fact that we were folding BMRs

from all latitudes, each maybe with a normal distribu-

tion, but found that the T distribution is also the best

fit, by far, for every 5o latitudinal bin shown in Figure

6. One possible explanation could be that the inter-

action of the rising flux-tube that gives rise to BMRs

is buffeted by a limited amount of effective interactions

with helical convective turbulence. These would act as

the small sample that gives rise to a mean imparted

tilt described by a distribution with heavier tails than

a normal distribution; even if the buffeting itself would

be normally distributed. The optimal fitted parameters

(see Table 3) are 3.45 degrees of freedom (n), which we

speculate could be related to the effective number of in-

teractions with turbulence during BMR rise; a location

(µ) of 7.5o, which quantifies the systematic tilt presented

by HH BMRs; and a scale (s) of 14.46o which translates

to a standard deviation of 22.31o.

In the case of AH regions, the best fit (by far) is a von

Mises distribution (also known as the circular normal

distribution), defined as:

f(x|κ, µ) =
eκ cos(x−µ)

2πI0(κ)
, (8)

where κ is a scale parameter analogous to σ2 in a nor-

mal distribution, µ is the location parameter, and I0(κ)

is the modified Bessel function of order 0. The von Mises

distribution has circular support ([−π, π]) so its better

suited for angular random variables. The optimal fit-

ted parameters (see Table 3) are a location (µ) of 2.85o,

which demonstrates that AH BMRs also have a hemi-

spheric systematic inclination (although not as marked

as HH regions); and a scale factor (κ) of 2.62 which

translates to a standard deviation of 41.55o. Although

AIC indisputably shows a von Mises distribution as the

best fit to our AH data, the K-S test can only confidently

reject the Cauchy distribution as a possible analytical fit

to AH tilts. All other distributions are still consistent

enough with the data given the K-S test. Having more

cycles worth of AH observations would help give cer-

tainty to our results. However, repeating the exercise

for the individual 5o bins shown in Figure 6 has the

same result as with the HH distribution. In every single

case the AIC finds the von Mises distribution to be the

best distribution by far.
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Figure 7. Analytic fit to the relative tilt angle distribution
for HH (dashed purple) and AH (dashed blue) populations.
The empirical distributions associated with each population
are shown using the same colors, but a solid line .

Figure 7 shows the relative tilt angle distribution for

HH and AH regions once all cycles and hemispheres have

been combined, as well as the optimal fits to HH and AH

BMR tilts. The AH distribution is clearly more spread

than the HH distribution, which is also evident in Figure

6 and Table 3. It also shows how both distributions

are shifted towards positive relative tilts, exhibiting the

same hemispheric systematic tendency for HH and AH

regions.

9. THE ANTI-HALE POPULATION IS NOT

EXPLAINED BY HALE’S TILT DISTRIBUTION

TAILS

Figure 8 demonstrates that the tails of the HH distri-

bution (dashed purple) cannot explain the relative fre-



12

100 0 100
Absolute Tilt angles (°)

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y 
De

ns
ity

Student's-t (HH) von Mises (AH) +/- 90° Data

100 50 0 50 100
Absolute Tilt angles (°)

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

Pr
ob

ab
ilit

y 
De

ns
ity

Figure 8. Left: Analytic fits of the von Mises (solid blue) plus Student’s t (dashed purple) distributions to the absolute tilt of
our entire database (solid gray). Tilt angles have been shifted by 1800 to place the focus of the plot on the AH regions. Right:
Zoom in on the AH peak. The black dotted line is the same of both plots, as are the orange vertical dashed lines at ±90o.

quency of AH regions, which needs to be explained by a

second distribution (solid blue). The standard deviation

associated with the HH and AH distributions indicate

that in the vicinity of a tilt angle of ±90o (dotted or-

ange vertical lines), the majority of AH regions are likely

to belong to the HH population. However, the further

from ±90o the more likely that AH regions belong to the

AH distribution. Around 14o past ±90o, AH regions are

equally likely to belong to the HH and AH distributions,

after which they are significantly more likely to belong

to the AH distribution.

Given that the number of AH regions in our data is

large enough (421), the results from both AIC and K-S

rule out with a high degree of certainty that AH regions

belong to the HH distribution. We take the latter as ev-

idence that AH regions constitute a distinct population

and therefore their origin is different than the one of HH

regions.

10. WHAT IS THE ORIGIN OF ANTI-HALE

REGIONS?

The excess frequency of AH regions in the most equa-

torial bin (0-5o), relative to the HH distribution (see

Fig. 6), indicates that these equatorial AH regions are

likely associated with the dominant toroidal flux system

of the opposite hemisphere (as reported by McClintock

et al. 2014).

For all other bins (5-35o) the latitudinal distribution

of HH and AH regions are statistically indistinguish-

able. We see this as evidence of a strong connection

between them. The systematic properties of AH re-

gions suggest that they also originate from magnetic

fields that are primarily toroidal (hence their system-

atic East-west orientation and systematically positive

relative tilt. We speculate that AH regions are con-

nected to the prior emergence of HH regions with a

very strong associated poloidal field contribution. This

poloidal field could be sheared on the spot by differential

rotation into a toroidal field (of the opposite polarity)

that is strong enough to produce an AH region. This

hypothesis may also explain why AH regions seem to be

more frequent in stronger cycles (see Fig. 5), given that

there is an increased likelihood of seeing large sunspot

groups in stronger cycles Muñoz-Jaramillo et al. (2015a).

Our hypothesis could be validated if the emergence of

AH regions is preceded consistently by HH regions with

strong poloidal field contributions at a similar latitude

and longitude. If our hypothesis is true, AH regions

would still be consistent with the existence of largely

coherent toroidal flux systems inside the solar interior

and may be playing an even more important role on the

solar dynamo that is currently believed.

11. SUMMARY

We use a database consisting of 9,243 unique bipo-

lar magnetic regions belonging to the last 4 solar Cycles

(21, 22, 23, 24) measured by two ground-based instru-

ments, KPVT/512 and KPVT/SPMG and two space-

based instruments, SOHO/MDI and SDO/HMI. Bipolar

magnetic regions belonging to different instruments are

calibrated by homogenizing BMR flux distributions and

applying a flux threshold below which measurements of

bipolar magnetic regions are likely to be strongly af-

fected by instrument discrepancies. We find that the

only instrument that needs a calibration factor (0.8) is

SOHO/MDI, which is in good agreement (1/0.8 = 1.25)
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with the 1.3 factor found by Liu et al. (2012) to cal-

ibrate SDO/HMI to SOHO/MDI for strong magnetic

fields, and adopt a flux threshold of 3 × 1021Mx. This

leaves 7,511 bipolar magnetic regions that we consider to

be homogeneous enough to be studied together. Out of

this revised database, 421 (5.61%) bipolar magnetic re-

gions have anti-hale polarity orientation, which enables

a robust statistical characterization that is not possible

without the combination of observations from multiple

solar cycles.

Our results show that we can reject, with a very high

degree of certainty, that anti-Hale bipolar magnetic re-

gions belong to the same population as Hale regions. We

also rule out, with a very high degree of certainty, that

anti-Hale bipolar magnetic regions can be explained as

Hale regions whose polarity orientation is an extreme

realization of a unique physical mechanism. Only anti-

Hale regions that are oriented almost completely in the

north-south direction (within 14o of a ±90o fully north-

south tilt) are likely to be flipped Hale regions.

Our results support the claim by Stenflo & Kosovichev

(2012) that anti-Hale and Hale regions do not have the

same origin, and reject the suggestion by McClintock

et al. (2014) that the anti-Hale regions can be accounted

by the tails of the tilt angle distribution of the Hale

bipolar magnetic regions. However, we disagree with

the interpretation of Stenflo & Kosovichev (2012) that

the existence of anti-Hale regions is in contradiction with

the existence of a largely coherent toroidal flux system.

Our results show that Anti-Hale regions have a pre-

ferred East-West orientation and follow the same Joy

hemispheric tendency as Hale regions: i.e. anti-Hale re-

gions also have a tendency to have leading (trailing)

polarities that are closer to the equator (pole). This

means that they originate from largely toroidal fields

with a polarity orientation opposite to each hemisphere’s

dominant flux system. We speculate that these toroidal

fields are sheared locally (”on the spot”) by differen-

tial rotation from the poloidal field associated with pre-

ceding Hale regions possessing a strong poloidal signa-

ture. This would explain why the relative frequency

of anti-Hale regions seems to be larger for stronger cy-

cles. It also explains why they are observed coexisting

with Hale regions at similar latitudes. Finally, it also

explains why anti-Hale regions have a latitudinal distri-

bution that is statistically indistinguishable from that

of Hale regions. This hypothesis can be validated (falsi-

fied) in future work by studying if there is a consistent

presence of Hale regions with strong poloidal field con-

tributions at similar latitude and longitude preceding

anti-Hale emergence. If our hypothesis is true, the gen-

eration of anti-Hale regions would be acting as a strong

form of non-linear quenching mechanism for the solar

cycle because they would counteract the strong positive

contribution of the originating Hale regions. It would

also reconcile the existence of anti-Hale regions with the

commonly held picture of a largely coherent toroidal flux

system

The main results of this work are the following:

1. The tilts of Bipolar Magnetic Regions from differ-

ent cycles and hemispheres are consistent enough

with each other that they can be considered to be

from the same population and combined together.

2. There seems to be monotonic relationship between

cycle amplitude and the relative abundance of

anti-Hale region emergence.

3. The latitudinal distribution of Hale and anti-Hale

regions can be considered to be the same, with

the exception of the equatorial region (0-5o) where

anti-Hale regions are comparatively more frequent.

4. Anti-Hale regions present the same systematic rel-

ative tilt angle inclination than Hale regions. i.e.

anti-Hale regions’ leading polarity tends to be

closer to the equator than their trailing polarity.

5. Anti-Hale region relative tilt also seems to increase

with latitude, but this result may not be signifi-

cant.

6. Hale region relative tilt distribution is best fitted

by a Student’s T distribution centered on 7.5o and

with a standard deviation of 22.31o.

7. Anti-Hale region relative tilt distribution is best

fitted by a von Mises distribution centered on 2.85o

and with a standard deviation of 41.55o.

8. Hale and anti-Hale regions cannot be considered

to belong to the same population.

9. Anti-Hale regions cannot be explained solely as

Hale regions whose polarity has been flipped. i.e.

as exceptional Hale regions.

12. DATA REPOSITORY

The database used for our analysis has been

published by Muñoz-Jaramillo et al. (2021) in

the Harvard Dataverse and can be accessed at

https://doi.org/10.7910/DVN/QEMSZ2.
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